Librería Portfolio Librería Portfolio

Búsqueda avanzada

TIENE EN SU CESTA DE LA COMPRA

0 productos

en total 0,00 €

INDOOR WIRELESS COMMUNICATIONS: FROM THEORY TO IMPLEMENTATION
Título:
INDOOR WIRELESS COMMUNICATIONS: FROM THEORY TO IMPLEMENTATION
Subtítulo:
Autor:
ARAGON-ZAVALA, ALEJANDRO
Editorial:
JOHN WILEY
Año de edición:
2017
Materia
COMUNICACIONES MOVILES
ISBN:
978-0-470-74116-0
Páginas:
440
99,95 €

 

Sinopsis

Indoor Wireless Communications: From Theory to Implementation provides an in-depth reference for design engineers, system planners and post graduate students interested in the vastly popular field of indoor wireless communications. It contains wireless applications and services for in-building scenarios and knowledge of key elements in the design and implementation of these systems. Technologies such as Wireless Local Area Networks, Bluetooth, ZigBee, Indoor Optical Communications, WiMAX, UMTS and GSM for indoor environments are fully explained and illustrated with examples. Antennas and propagation issues for in-building scenarios are also discussed, emphasizing models and antenna types specifically developed for indoor communications. An exhaustive survey on indoor wireless communication equipment is also presented, covering all available technologies including antennas, distribution systems, transceivers and base stations.



Table of Contents

Preface xix

1 Introduction 1

1.1 Motivation 1

1.2 Evolution of Macro to Heterogeneous Networks 2

1.3 Challenges 3

1.4 Structure of the Book 4

References 5

2 Indoor Wireless Technologies 7

2.1 Cellular 7

2.1.1 The Cellular Concept 8

2.1.2 GSM 9

2.1.3 UMTS 11

2.1.4 HSPA 12

2.1.5 LTE 13

2.2 Wi-Fi 14

2.2.1 History 14

2.2.2 Medium Access Control (MAC) Sublayer 16

2.2.3 Physical Layer 17

2.2.4 Industry Bodies 17

2.2.4.1 Wi-Fi Alliance 17

2.2.4.2 IEEE 802.11 17

2.2.4.3 The Wireless Broadband Alliance 17

2.2.5 Wi-Fi Standards 18

2.2.5.1 IEEE 802.11-1997 18

2.2.5.2 IEEE 802.11a 18

2.2.5.3 IEEE 802.11b 18

2.2.5.4 IEEE 802.11g 18

2.2.5.5 IEEE 802.11-2007 18

2.2.5.6 IEEE 802.11n 18

2.2.6 Spectrum 19

2.2.6.1 2.4 GHz Band 19

2.2.6.2 5 GHz Band 20

2.2.7 Modulation Schemes Used in Wi-Fi 21

2.2.8 Multiple Access (MA) Techniques 21

2.2.8.1 Frequency-Hopping Spread Spectrum (FHSS) 21

2.2.8.2 Direct Sequence Spread Spectrum (DSSS) 22

2.2.8.3 Orthogonal Frequency Division Multiplexing (OFDM) 23

2.2.9 Power Levels 24

2.2.10 Performance Indicators 25

2.2.11 Target Signal Levels and Link Budgets 25

2.2.12 Interference Challenges 29

2.2.13 Channel Planning 29

2.2.13.1 Single-Floor and Vertical Channel Planning 30

2.2.13.2 Multichannel Access Points 31

2.2.13.3 Automated Planning 31

2.2.14 Mobility Issues 31

2.2.14.1 Layer 2 Roam 32

2.2.14.2 Layer 3 Roam 32

2.3 Bluetooth 33

2.4 ZigBee 36

2.5 Radio Frequency Identification (RFID) 37

2.6 Private Mobile Radio (PMR) 39

2.6.1 PMR Elements 40

2.6.2 Attributes 40

2.6.3 TETRA 41

2.7 Digital Enhanced Cordless Telecommunications (DECT) 42

References 44

3 System Requirements 45

3.1 Environments 45

3.1.1 Corporate Buildings 46

3.1.2 Airports 47

3.1.3 Trains and Railway Stations 50

3.1.4 Shopping Centres 52

3.1.5 Hospitals 53

3.1.6 Arenas and Stadiums 54

3.1.6.1 What Makes a Stadium so Special? 56

3.1.6.2 Mix of Communities with Different Needs 56

3.1.7 University Campuses 57

3.1.8 Underground Stations 59

3.1.9 Cinemas and Theatres 60

3.1.10 Hotels 60

3.1.11 Cruise Ships 62

3.2 Coverage 62

3.2.1 Cellular 62

3.2.2 Wi-Fi 64

3.2.3 Wireless Personal Area Networks (WPAN) 65

3.3 Isolation 66

3.4 Leakage 67

3.5 Capacity 67

3.6 Interference 70

3.7 Signal Quality 71

3.8 Technology 72

3.9 Cost 72

3.10 Upgradeability 73

3.11 System Expansion 74

3.12 Conclusion 74

References 74

4 Radio Propagation 77

4.1 Maxwell's Equations 77

4.1.1 Gauss's Law for Electricity 79

4.1.2 Gauss's Law for Magnetism 79

4.1.3 Faraday's Law of Induction 81

4.1.4 Ampère's Circuital Law 81

4.1.5 Consequence of Maxwell's Equations 82

4.2 Plane Waves 82

4.2.1 Wave Equation 83

4.2.2 Plane Wave Properties 84

4.2.3 Wave Polarization 85

4.2.4 Wave Propagation in Lossy Media 87

4.3 Propagation Mechanisms 87

4.3.1 Is Electromagnetic Theory Wrong Inside Buildings? 87

4.3.2 Loss and Skin Effect 88

4.3.3 Reflection 89

4.3.4 Refraction (Transmission) 90

4.3.5 Diffraction 91

4.3.6 Scattering 92

4.3.7 Waveguiding 94

4.4 Effects of Materials 95

4.5 Path Loss 97

4.5.1 Median Path Loss 97

4.5.2 Link Budgets 98

4.5.3 Receiver Sensitivity 99

4.5.4 Maximum Acceptable Path Loss (MAPL) 99

4.5.5 Free-Space Loss 100

4.5.6 Excess Loss 100

4.6 Fast Fading 101

4.7 Shadowing (Slow Fading) 103

4.8 Building Penetration Loss 104

4.8.1 Radio Wave Propagation into Buildings 106

4.8.2 Variations with Frequency 106

4.8.3 Variations with Depth and Clutter 109

4.8.4 Comparison of Assumptions Made by Ofcom 109

4.9 Conclusion 109

References 110

5 Channel Modelling 113

5.1 The Importance of Channel Modelling 113

5.2 Propagation Modelling Challenges 114

5.3 Model Classification 114

5.3.1 Channel Bandwidth 114

5.3.2 Propagation Environment 115

5.3.3 Model Construction Approach 115

5.4 Model Accuracy 116

5.5 Empirical Models 117

5.5.1 Power Law Model 118

5.5.2 Keenan-Motley Model 119

5.5.3 ITU-R Indoor Model 121

5.5.4 Siwiak-Bertoni-Yano (SBY) Multipath-Based Model 122

5.5.5 Ericsson Multiple Breakpoint Model 122

5.5.6 Tuan Empirical Indoor Model: 900 MHz to 5.7 GHz 123

5.5.7 Attenuation Factor Model 123

5.5.8 Indoor Dominant Path Model (DPM) 124

5.5.9 COST-231 Multiwall Model 126

5.6 Physical Models 128

5.6.1 Introduction to Ray Tracing 129

5.6.2 Honcharenko-Bertoni Model 130

5.6.3 Ray-Tracing Site-Specific Model 131

5.6.4 Lee Ray-Tracing Model 132

5.6.5 Multichannel Coupling (MCC) Prediction 133

5.6.6 Angular Z-Buffer Algorithm for Efficient Ray Tracing 136

5.6.7 Intelligent Ray-Tracing (IRT) Model 138

5.6.8 Hybrid Parabolic Equation-Integral Equation Indoor Model 139

5.7 Hybrid Models 140

5.7.1 Reduced-Complexity UTD Model 140

5.7.2 Measurement-Based Prediction 142

5.8 Outdoor-to-Indoor Models 143

5.8.1 COST-231 Line-of-Sight Model 144

5.8.2 COST-231 Non-Line-of-Sight Model 146

5.8.3 Broadband Wireless Access (BWA) Penetration Model 147

5.8.4 Ichitsubo-Okamoto Outdoor-to-Indoor Model (800 MHz-8 GHz) 148

5.8.5 Taga-Miura Model Using Identification of Path Passing Through Wall Openings 149

5.9 Models for Propagation in Radiating Cables 150

5.9.1 Zhang Model 150

5.9.2 Carter Model 151

5.9.3 Seseña-Aragón-Castañón Model 152

5.10 Wideband Channel Characteristics 153

5.11 Noise Considerations 156

5.11.1 Noise Sources 157

5.11.2 Noise Parameters 157

5.11.3 Considerations for Indoor Wireless Systems 158

5.12 In-Building Planning Tools 159

5.12.1 iBwave Design 159

5.12.2 WiMap-4G 160

5.12.3 Mentum CellPanner 160

5.12.4 Atrium 160

5.12.5 WinProp 160

5.12.6 CellTrace 161

5.12.7 EDX Signal Pro 161

5.12.8 iBuildNet DAS 162

5.12.9 Wireless InSite 162

5.13 Conclusion 1