Librería Portfolio Librería Portfolio

Búsqueda avanzada

TIENE EN SU CESTA DE LA COMPRA

0 productos

en total 0,00 €

INTRODUCTION TO COMMUNICATION SYSTEMS
Título:
INTRODUCTION TO COMMUNICATION SYSTEMS
Subtítulo:
Autor:
MADHOW, U
Editorial:
CAMBRIDGE UNIVERSITY PRESS
Año de edición:
2015
Materia
COMUNICACIONES - OTROS TEMAS
ISBN:
978-1-107-02277-5
Páginas:
512
66,50 €

 

Sinopsis

Showcasing the essential principles behind modern communication systems, this accessible undergraduate textbook provides a solid introduction to the foundations of communication theory. Carefully selected topics introduce students to the most important and fundamental concepts, giving students a focused, in-depth understanding of core material, and preparing them for more advanced study. Abstract concepts are introduced to students ´just in time´ and reinforced by nearly 200 end-of-chapter exercises, alongside numerous MATLAB code fragments, software problems and practical lab exercises, firmly linking the underlying theory to real-world problems, and providing additional hands-on experience. Finally, an accessible lecture-style organisation makes it easy for students to navigate to key passages, and quickly identify the most relevant material. Containing material suitable for a one- or two-semester course, and accompanied online by a password-protected solutions manual and supporting instructor resources, this is the perfect introductory textbook for undergraduate students studying electrical and computer engineering.

Software labs build on abstract theory, and give students a taste of practical industrial applications
Chapter introductions explaining real-world relevance of the material and a final roadmap for future R&D illustrate where communication theory sits within the bigger picture
Integration of MATLAB code fragments and labs throughout the text allows for immediate connection of theory to practice
Online resources include lecture slides and a solutions manual for instructors, example lab reports and code for instructors, and PowerPoint and JPEG versions of all the figures in the book



Table of Contents

Part I. Introduction:
1.1 Analog or digital?
1.2 A technology perspective
1.3 The scope of this textbook
1.4 Why study communication systems?
1.5 Concept summary
1.6 Notes
Part II. Signals and Systems:
2.1 Complex numbers
2.2 Signals
2.3 Linear time-invariant systems
2.4 Fourier series
2.5 The Fourier transform
2.6 Energy spectral density and bandwidth
2.7 Baseband and passband signals
2.8 The structure of a passband signal
2.9 Wireless-channel modeling in complex baseband
2.10 Concept summary
2.11 Notes
2.12 Problems
Software labs
Part III. Analog Communication Techniques:
3.1 Terminology and notation
3.2 Amplitude modulation
3.3 Angle modulation
3.3.1 Limiter-discriminator demodulation
3.4 The superheterodyne receiver
3.5 The phase-locked loop
3.6 Some analog communication systems
3.7 Concept summary
3.8 Notes
3.9 Problems
Software labs
Part IV. Digital Modulation:
4.1 Signal constellations
4.2 Bandwidth occupancy
4.3 Design for bandlimited channels
4.4 Orthogonal and biorthogonal modulation
4.5 Proofs of the Nyquist theorems
4.6 Concept summary
4.7 Notes
4.8 Problems
Software lab
Appendices
Part V. Probability and Random Processes:
5.1 Probability basics
5.2 Random variables
5.3 Multiple random variables, or random vectors
5.4 Functions of random variables
5.5 Expectation
5.6 Gaussian random variables
5.7 Random processes
5.8 Noise modeling
5.9 Linear operations on random processes
5.10 Concept summary
5.11 Notes
5.12 Problems
Appendices
Part VI. Optimal Demodulation:
6.1 Hypothesis testing
6.2 Signal-space concepts
6.3 Performance analysis of ML reception
6.4 Bit error probability
6.5 Link-budget analysis
6.6 Concept summary
6.7 Notes
6.8 Problems
Software labs
Part VII. Channel Coding:
7.1 Motivation
7.2 Model for channel coding
7.3 Shannon´s promise
7.4 Introducing linear codes
7.5 Soft decisions and belief propagation
7.6 Concept summary
7.7 Notes
7.8 Problems
Part VIII. Dispersive Channels and MIMO:
8.1 The single-carrier system model
8.2 Linear equalization
8.3 Orthogonal frequency-division multiplexing
8.4 MIMO
8.5 Concept summary
8.6 Notes
8.7 Problems
Software labs.