Librería Portfolio Librería Portfolio

Búsqueda avanzada

TIENE EN SU CESTA DE LA COMPRA

0 productos

en total 0,00 €

POWER ELECTRONIC CONVERTERS: DYNAMICS AND CONTROL IN CONVENTIONAL AND RENEWABLE ENERGY APPLICATIONS
Título:
POWER ELECTRONIC CONVERTERS: DYNAMICS AND CONTROL IN CONVENTIONAL AND RENEWABLE ENERGY APPLICATIONS
Subtítulo:
Autor:
SUNTIO, T
Editorial:
WILEY-VCH
Año de edición:
2017
Materia
ELECTRONICA DE POTENCIA - GENERAL
ISBN:
978-3-527-34022-4
Páginas:
720
296,40 €

 

Sinopsis

Filling the need for a reference that explains the behavior of power electronic converters, this book provides information currently unavailable in similar texts on power electronics.
Clearly organized into four parts, the first treats the dynamics and control of conventional converters, while the second part covers the dynamics and control of DC-DC converters in renewable energy applications, including an introduction to the sources as well as the design of current-fed converters applying duality-transformation methods. The third part treats the dynamics and control of three-phase rectifiers in voltage-sourced applications, and the final part looks at the dynamics and control of three-phase inverters in renewable-energy applications.
With its future-oriented perspective and advanced, first-hand knowledge, this is a prime resource for researchers and practicing engineers needing a ready reference on the design and control of power electronic converters.



Table of Contents

Preface xiii

About the Authors xv

Part One Introduction 1

1 Introduction 3

1.1 Introduction 3

1.2 Implementation of Current-Fed Converters 6

1.3 Dynamic Modeling of Power Electronic Converters 7

1.4 Linear Equivalent Circuits 8

1.5 Impedance-Based Stability Assessment 12

1.6 Time Domain-Based Dynamic Analysis 14

1.7 Renewable Energy System Principles 17

1.8 Content Review 19

References 20

2 Dynamic Analysis and Control Design Preliminaries 27

2.1 Introduction 27

2.2 Generalized Dynamic Representations - DC-DC 27

2.2.1 Introduction 27

2.2.2 Generalized Dynamic Representations 29

2.2.3 Generalized Closed-Loop Dynamics 30

2.2.4 Generalized Cascaded Control Schemes 33

2.2.5 Generalized Source and Load Interactions 38

2.2.6 Generalized Impedance-Based Stability Assessment 40

2.3 Generalized Dynamic Representations: DC-AC, AC-DC, and AC-AC 42

2.3.1 Introduction 42

2.3.2 Generalized Dynamic Representations 44

2.3.3 Generalized Closed-Loop Dynamics 48

2.3.4 Generalized Cascaded Control Schemes 50

2.3.5 Generalized Source and Load Interactions 54

2.3.6 Generalized Impedance-Based Stability Assessment 56

2.4 Small-Signal Modeling 57

2.4.1 Introduction 57

2.4.2 Average Modeling and Linearization 60

2.4.3 Modeling Coupled-Inductor Converters 64

2.4.4 Modeling in Synchronous Reference Frame 66

2.5 Control Design Preliminaries 77

2.5.1 Introduction 77

2.5.2 Transfer Functions 77

2.5.3 Stability 84

2.5.4 Transient Performance 95

2.5.5 Feedback-Loop Design Constraints 100

2.5.6 Controller Implementations 103

2.5.7 Optocoupler Isolation 108

2.5.8 Application of Digital Control 109

2.6 Resonant LC-Type Circuits 110

2.6.1 Introduction 110

2.6.2 Single-Section LC Filter 112

2.6.3 LCL Filter 113

2.6.4 CLCL Filter 115

References 117

Part Two Voltage-Fed DC-DC Converters 123

3 Dynamic Modeling of Direct-on-Time Control 125

3.1 Introduction 125

3.2 Direct-on-Time Control 127

3.3 Generalized Modeling Technique 129

3.3.1 Buck Converter 131

3.3.2 Boost Converter 134

3.3.3 Buck-Boost Converter 136

3.3.4 Superbuck Converter 140

3.4 Fixed-Frequency Operation in CCM 142

3.4.1 Buck Converter 143

3.4.2 Boost Converter 146

3.4.3 Buck-Boost Converter 149

3.4.4 Superbuck Converter 153

3.4.5 Coupled-Inductor Superbuck Converter 157

3.5 Fixed-Frequency Operation in DCM 163

3.5.1 Buck Converter 164

3.5.2 Boost Converter 167

3.5.3 Buck-Boost Converter 170

3.6 Source and Load Interactions 173

3.6.1 Source Interactions 173

3.6.2 Input Voltage Feedforward 174

3.6.3 Load Interactions 176

3.6.4 Output-Current Feedforward 177

3.7 Impedance-Based Stability Issues 179

3.8 Dynamic Review 181

References 186

4 Dynamic Modeling of Current-Mode Control 189

4.1 Introduction 189

4.2 Peak Current Mode Control 190

4.2.1 PCM Control Principles 190

4.2.2 Development of Duty-Ratio Constraints in CCM 192

4.2.3 Development of Duty-Ratio Constraints in DCM 195

4.2.4 Origin and Consequences of Mode Limits in CCM and DCM 196

4.2.5 Duty-Ratio Constraints in CCM 201

4.2.5.1 Buck Converter 201

4.2.5.2 Boost Converter 201

4.2.5.3 Buck-Boost Converter 202

4.2.5.4 Superbuck Converter 204

4.2.5.5 Coupled-Inductor Superbuck Converter 205

4.2.6 Duty-Ratio Constraints in DCM 205

4.2.6.1 Buck Converter 205

4.2.6.2 Boost Converter 206

4.2.6.3 Buck-Boost Converter 206

4.2.7 General PCM Transfer Functions in CCM 207

4.2.8 PCM State Spaces and Transfer Functions in CCM 209

4.2.8.1 Buck Converter 209

4.2.8.2 Boost Converter 211

4.2.8.3 Buck-Boost Converter 213

4.2.8.4 Superbuck Converter 215

4.2.8.5 Coupled-Inductor Superbuck Converter 219

4.2.9 PCM State Spaces in DCM 222

4.2.9.1 Buck Converter 222

4.2.9.2 Boost Converter 222

4.2.9.3 Buck-Boost Converter 223

4.3 Average Current-Mode Control 224

4.3.1 Introduction 224

4.3.2 ACM Control Principle 225

4.3.3 Modeling with Full Ripple Inductor Current Feedback 226

4.4 Variable-Frequency Control 230

4.4.1 Introduction 230

4.4.2 Self-Oscillation Modeling - DOT and PCM Control 231

4.5 Source and Load Interactions 239

4.5.1 Output Current Feedforward 240

4.6 Impedance-Based Stability Issues 243

4.7 Dynamic Review 244

4.8 Critical Discussions on PCM Models and Their Validation 249

4.8.1 Ridley's Models 249

4.8.2 The Book PCM Model in CCM 252

4.8.3 Evaluation of PCM-Controlled Buck in CCM 253

4.8.4 Evaluation of PCM-Controlled Boost in CCM 258

4.8.5 Concluding Remarks 259

References 260

5 Dynamic Modeling of Current-Output Converters 265

5.1 Introduction 265

5.2 Dynamic Modeling 267

5.3 Source and Load Interactions 269

5.3.1 Source Interactions 269

5.3.2 Load Interactions 270

5.4 Impedance-Based Stability Issues 271

5.5 Dynamic Review 272

References 275

6 Control Design Issues in Voltage-Fed DC-DC Converters 277

6.1 Introduction 277

6.2 Developing Switching and Average Models 279

6.2.1 Switching Models 279

6.2.2 Averaged Models 287

6.3 Factors Affecting Transient Response 291

6.3.1 Output Voltage Undershoot 292

6.3.2 Settling Time 294

6.4 Remote Sensing 304

6.4.1 Introduction 304

6.4.2 Remote Sensing Dynamic Effect Analysis Method 304

6.4.3 Remote Sensing Impedance Block Examples 306

6.4.4 Experimental Evidence 307

6.5 Simple Control Design Method 310

6.5.1 DDR-Controlled Buck Converter 312

6.5.2 PCM-Controlled Buck Converter 315

6.5.3 DDR-Controlled Boost Converter 321

6.5.4 PCM-Controlled Boost Converter 325

6.6 PCM-Controlled Superbuck Converter: Experimental Examples 330

6.6.1 Introduction 330

6.6.2 Discrete-Inductor Superbuck 331

6.6.3 Coupled-Inductor Superbuck 332

6.7 Concluding Remarks 334

References 334

Part Three Current-Fed Converters 339

7 Introduction to Cu