Librería Portfolio Librería Portfolio

Búsqueda avanzada

TIENE EN SU CESTA DE LA COMPRA

0 productos

en total 0,00 €

HYBRID ANISOTROPIC MATERIALS FOR STRUCTURAL AVIATION PARTS
Título:
HYBRID ANISOTROPIC MATERIALS FOR STRUCTURAL AVIATION PARTS
Subtítulo:
Autor:
GOLFMA, Y
Editorial:
CRC
Año de edición:
2010
ISBN:
978-1-4398-3680-4
Páginas:
320
112,00 €

 

Sinopsis

Features
Presents up-to-date information on the use of anisotropic materials in aerospace design
Provides strength criteria for anisotropic materials in a range of aviation and aerospace applications
Covers the impregnation process for braider fibers, low cost hybrid polymers, and carbon fibers
Discusses ultrasonic and thermography nondestructive methods for aviation and marine parts
Details the nano-composite automation process


Summary
Optimization of aviation and space vehicle design requires accurate assessment of the dynamic stability and general properties of hybrid materials used in aviation parts. Written by a professional with 40 years of experience in the field of composite research, Hybrid Anisotropic Materials for Structural Aviation Parts provides key analysis and application examples to help the reader establish a solid understanding of anisotropic properties, theory of laminates, and basic fabrication technologies.

Tools to ensure cost-effective, optimized fabrication of aircraft, satellites, space vehicles, and more.

With a focus on analytic modeling and dynamic analysis of anisotropic hybrid materials used in structural parts, this book assesses how and why design mechanisms either work or fail. It describes how current manufacturing techniques can apply alternative electronic and ultrasonic systems to improve the strength of an aircraft's parts, reduce vibrations, and counteract deicing effects, among other vital requirements.

Presenting valuable case studies involving manufacturers such as Boeing and DuPont, this book covers topics including:


Nanocomposites, impregnation processes, and stress-strain analysis


New techniques for analyzing interlaminar shear distribution in carbon fiber-epoxy sandwich technologies


Nondestructive methods, control technological parameters, and the influence of technological defects


Use of carbon-silicon nanotubes and ceramic technology


Strength criteria and analysis, and composite life prediction methodologies


Dynamic aspects and stability of jetliners and lattice aviation structures


Interlaminar shear stress analysis and possible failure


Fatigue strength and vibration analysis


This volume offers a useful, informative summary of the cutting-edge work being done in the field of high-performance composite materials, including fiberglass and carbon. With coverage of topics ranging from stress analysis and failure prediction to manufacturing methods and nondestructive inspection technology, it provides unique information to benefit a new generation of composite designers, graduate students, and industry professionals working with high-performance structures.