TIENE EN SU CESTA DE LA COMPRA
en total 0,00 €
Containing chapter contributions from over 130 experts, this unique publication is the first handbook dedicated to the physics and technology of X-ray imaging, offering extensive coverage of the field. This highly comprehensive work is edited by one of the world's leading experts in X-ray imaging physics and technology and has been created with guidance from a Scientific Board containing respected and renowned scientists from around the world.
The book´s scope includes 2D and 3D X-ray imaging techniques from soft-X-ray to megavoltage energies, including computed tomography, fluoroscopy, dental imaging and small animal imaging, with several chapters dedicated to breast imaging techniques. 2D and 3D industrial imaging is incorporated, including imaging of artworks. Specific attention is dedicated to techniques of phase contrast X-ray imaging.
The approach undertaken is one that illustrates the theory as well as the techniques and the devices routinely used in the various fields. Computational aspects are fully covered, including 3D reconstruction algorithms, hard/software phantoms, and computer-aided diagnosis. Theories of image quality are fully illustrated. Historical, radioprotection, radiation dosimetry, quality assurance and educational aspects are also covered.
This handbook will be suitable for a very broad audience, including graduate students in medical physics and biomedical engineering; medical physics residents; radiographers; physicists and engineers in the field of imaging and non-destructive industrial testing using X-rays; and scientists interested in understanding and using X-ray imaging techniques.
The handbook´s editor, Dr. Paolo Russo, has over 30 years' experience in the academic teaching of medical physics and X-ray imaging research. He has authored several book chapters in the field of X-ray imaging, is Editor-in-Chief of an international scientific journal in medical physics, and has responsibilities in the publication committees of international scientific organizations in medical physics.
Features:
Comprehensive coverage of the use of X-rays both in medical radiology and industrial testing
The first handbook published to be dedicated to the physics and technology of X-rays
Handbook edited by world authority, with contributions from experts in each field
Table of Contents
PART 1: Basic physical and technological aspects
Chapter 1: Basic physics of X-ray interactions in matter
Chapter 2: Xray tube physics and technology
Chapter 3: X-ray generators
Chapter 4: Carbon Nanotube Based Field Emission X-ray Technology
Chapter 5: Technology of Miniature X-Ray Tubes
Chapter 6: Technology of pyroelectric X-ray tubes
Chapter 7: History of X-Ray Tubes
Chapter 8: Synchrotron radiation x-ray sources for radiography and tomography
Chapter 9: X-ray shutters
Chapter 10: Calculation of x-ray spectra
Chapter 11: Radiochromic film dosimetry for radiology
Chapter 12: Computed Radiography
Chapter 13: Photon Counting Detectors for X-ray imaging
Chapter 14: Image Quality
Chapter 15: Image quality in attenuation based and phase contrast based X-ray imaging
Chapter 16: Inverse Compton Scattering X-ray sources
PART 2: X-ray Radiography and Fluoroscopy
Chapter 17: Wilhelm Conrad Roentgen - The discovery of X-rays and the creation of a new medical profession
Chapter 18: History of Radiology
Chapter 19: Digital Mammography
Chapter 20: Digital Breast Tomosynthesis
Chapter 21: Fluoroscopy: physics and technology
Chapter 22: Dental radiography
Chapter 23: Clinical mammographic and tomosynthesis units
Chapter 24: Physical image quality evaluation of x-ray detectors for digital radiography and mammography
Chapter 25: Mammography, breast tomosynthesis and risk of radiation-induced breast cancer
Chapter 26: Clinical radiographic units
Chapter 27: Clinical Fluoroscopy units
Chapter 28: Physical Basis of X-ray Breast Imaging
Chapter 29: Radiation dose in X-ray mammography and digital breast tomosynthesis
Chapter 30: Industrial Radiography
Chapter 31: Forensic Radiology
PART 3: X-ray Computed Tomography
Chapter 32: X-ray Computed Tomography for diagnostic imaging - from single-slice to multi-slice
Chapter 33: Analytical reconstruction methods in X-ray CT
Chapter 34: Iterative reconstruction methods in X-ray CT
Historical image gallery
Chapter 35: X-ray Cone-Beam Computed Tomography
Chapter 36: Small Animal X-ray Computed Tomography
Chapter 37: Quality Assurance of X-ray Computer Tomography
Chapter 38: Radiation Dose in X-ray Computed Tomography
Chapter 39: Dual energy X-ray computed tomography
Chapter 40: Soft x-ray tomography: techniques and applications
Chapter 41: 4-D X-ray Computed Tomography
Chapter 42: Dental and Maxillofacial Cone Beam Computed Tomography
Chapter 43: High Speed X-ray computed tomography
Chapter 44: Kilovoltage and Megavoltage Imaging in Radiotherapy
Chapter 45: Industrial X-ray computed tomography
Chapter 46: Industrial X-ray computed tomography scanners
Chapter 47: Dimensional metrology for industrial Computed Tomography
Chapter 48: Influence of scatter in X-ray imaging and scatter correction methods for industrial applications
PART 4: Phase-contrast X-ray imaging and other aspects
Chapter 49: Theory of X-ray phase-contrast imaging
Chapter 50: Non-interferometric techniques for X-ray phase-contrast biomedical imaging
Chapter 51: X-ray phase-contrast mammography
Chapter 52: X-ray phase contrast tomosynthesis imaging
Chapter 53: Crystal analyser-based X-ray Phase Contrast Imaging
Chapter 54: X-Ray scattering: analytical applications and imaging
Chapter 55: Tissue Substitute Materials for Diagnostic X-ray Imaging
Chapter 56: Phantoms for image quality and dose assessment
Chapter 57: Software phantoms for X-ray radiography and tomography
Chapter 58: Radiography and Computed Tomography for Works of Art
Chapter 59: Computer Aided Diagnosis for X-ray imaging
Chapter 60: Computer analysis of mammograms
Chapter 61: Databases for mammography
Chapter 62: Computer analysis of CT images for lung nodule detection
Chapter 63: Display Optimization & Human Factors
Chapter 64: Display for Medical Imaging and DICOM Grayscale Standard Display Function Fundamentals
Chapter 65: Quality Control of Medical Imaging Displays
Chapter 66: Radiation protection issues in X-ray radiology, fluoroscopy and computed tomography
Chapter 67: Educational aspects in radiography physics and technology
Chapter 68: Tables of X-rays mass attenuation coefficients, of K and L -energy, of K, L and M fluorescence yield, of Ka/Kß, La/Lßand La/L?