TIENE EN SU CESTA DE LA COMPRA
en total 0,00 €
New edition explores contemporary MRI principles and practices
Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications.
Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging.
Readers familiar with the first edition will find much new material, including:
New chapter dedicated to parallel imaging
New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications
Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present
Valuable improvements throughout with respect to equations, formulas, and text
New and updated problems to test further the readers´ grasp of core concepts
Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book.
Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
TABLE OF CONTENTS
Foreword to the Second Edition xvii
Foreword to the First ~ Edition xxi
Preface to the Second Edition xxvii
Preface to the First Edition xxix
Acknowledgements xxx
Acknowledgements to the First Edition xxxi
1 Magnetic Resonance Imaging: A Preview 1
1.1 Magnetic Resonance Imaging: The Name 1
1.2 The Origin of Magnetic Resonance Imaging 2
1.3 A Brief Overview of MRI Concepts 3
2 Classical Response of a Single Nucleus to a Magnetic Field 19
2.1 Magnetic Moment in the Presence of a Magnetic Field 20
2.2 Magnetic Moment with Spin: Equation of Motion 25
2.3 Precession Solution: Phase 29
3 Rotating Reference Frames and Resonance 37
3.1 Rotating Reference Frames 38
3.2 The Rotating Frame for an RF Field 41
3.3 Resonance Condition and the RF Pulse 44
4 Magnetization, Relaxation, and the Bloch Equation 53
4.1 Magnetization Vector 53
4.2 Spin-Lattice Interaction and Regrowth Solution 54
4.3 Spin-Spin Interaction and Transverse Decay 57
4.4 Bloch Equation and Static-Field Solutions 60
4.5 The Combination of Static and RF Fields 62
5 The Quantum Mechanical Basis of Precession and Excitation 67
5.1 Discrete Angular Momentum and Energy 68
5.2 Quantum Operators and the Schrödinger Equation 72
5.3 Quantum Derivation of Precession 77
5.4 Quantum Derivation of RF Spin Tipping 80
6 The Quantum Mechanical Basis of Thermal Equilibrium and Longitudinal Relaxation 85
6.1 Boltzmann Equilibrium Values 86
6.2 Quantum Basis of Longitudinal Relaxation 89
6.3 The RF Field 92
7 Signal Detection Concepts 95
7.1 Faraday Induction 96
7.2 The MRI Signal and the Principle of Reciprocity 99
7.3 Signal from Precessing Magnetization 101
7.4 Dependence on System Parameters 107
8 Introductory Signal Acquisition Methods: Free Induction Decay, Spin Echoes, Inversion Recovery, and Spectroscopy 113
8.1 Free Induction Decay and T* 2 114
8.2 The Spin Echo and T2 Measurements 120
8.3 Repeated RF Pulse Structures 126
8.4 Inversion Recovery and T1 Measurements 131
8.5 Spectroscopy and Chemical Shift 136
9 One-Dimensional Fourier Imaging, k-Space and Gradient Echoes 141
9.1 Signal and Effective Spin Density 142
9.2 Frequency Encoding and the Fourier Transform 144
9.3 Simple Two-Spin Example 147
9.4 Gradient Echo and k-Space Diagrams 151
9.5 Gradient Directionality and Nonlinearity 162
10 Multi-Dimensional Fourier Imaging and Slice Excitation 165
10.1 Imaging in More Dimensions 166
10.2 Slice Selection with Boxcar Excitations 175
10.3 2D Imaging and k-Space 184
10.4 3D Volume Imaging 194
10.5 Chemical Shift Imaging 197
11 The Continuous and Discrete Fourier Transforms 207
11.1 The Continuous Fourier Transform 208
11.2 Continuous Transform Properties and Phase Imaging 209
11.3 Fourier Transform Pairs 220
11.4 The Discrete Fourier Transform 223
11.5 Discrete Transform Properties 225
12 Sampling and Aliasing in Image Reconstruction 229
12.1 Infinite Sampling, Aliasing, and the Nyquist Criterion 230
12.2 Finite Sampling, Image Reconstruction, and the Discrete Fourier Transform 237
12.3 RF Coils, Noise, and Filtering 245
12.4 Nonuniform Sampling 250
13 Filtering and Resolution in Fourier Transform Image Reconstruction 261
13.1 Review of Fourier Transform Image Reconstruction 262
13.2 Filters and Point Spread Functions 264
13.3 Gibbs Ringing 267
13.4 Spatial Resolution in MRI 272
13.5 Hanning Filter and T*2 Decay Effects 281
13.6 Zero Filled Interpolation, Sub-Voxel Fourier Transform Shift Concepts, and Point Spread Function Effects 283
13.7 Partial Fourier Imaging and Reconstruction 286
13.8 Digital Truncation 293
14 Projection Reconstruction of Images 297
14.1 Radial k-Space Coverage 298
14.2 Sampling Radial k-Space and Nyquist Limits 302
14.3 Projections and the Radon Transform 308
14.4 Methods of Projection Reconstruction with Radial Coverage 310
14.5 Three-Dimensional Radial k-Space Coverage 317
14.6 Radial Coverage Versus Cartesian k-Space Coverage 320
15 Signal, Contrast, and Noise 325
15.1 Signal and Noise 326
15.2 SNR Dependence on Imaging Parameters 334
15.3 Contrast, Contrast-to-Noise, and Visibility 342
15.4 Contrast Mechanisms in MRI and Contrast Maximization 345
15.5 Contrast Enhancement with T1-Shortening Agents 358
15.6 Partial Volume Effects, CNR, and Resolution 363
15.7 SNR in Magnitude and Phase Images 365
15.8 SNR as a Function of Field Strength 368
16 A Closer Look at Radiofrequency Pulses 375
16.1 Relating RF Fields and Measured Spin Density 376
16.2 Implementing Slice Selection 381
16.3 Calibrating the RF Field 383
16