Librería Portfolio Librería Portfolio

Búsqueda avanzada

TIENE EN SU CESTA DE LA COMPRA

0 productos

en total 0,00 €

OPERATING SYSTEMS: INTERNALS AND DESIGN PRINCIPLES, GLOBAL EDITION 8E
Título:
OPERATING SYSTEMS: INTERNALS AND DESIGN PRINCIPLES, GLOBAL EDITION 8E
Subtítulo:
Autor:
STALLINGS, W
Editorial:
PEARSON
Año de edición:
2014
Materia
SISTEMAS OPERATIVOS OTROS TEMAS
ISBN:
978-1-292-06135-1
Páginas:
800
85,50 €

 

Sinopsis

Intended for use in a one- or two-semester undergraduate course in operating systems for computer science, computer engineering, and electrical engineering majors


Operating Systems: Internals and Design Principles provides a comprehensive and unified introduction to operating systems topics. Stallings emphasizes both design issues and fundamental principles in contemporary systems and gives readers a solid understanding of the key structures and mechanisms of operating systems. He discusses design trade-offs and the practical decisions affecting design, performance and security. The book illustrates and reinforces design concepts and ties them to real-world design choices through the use of case studies in Linux, UNIX, Android, and Windows 8.

Teaching and Learning Experience

This program presents a better teaching and learning experience-for you and your students. It will help:

Illustrate Concepts with Running Case Studies: To illustrate the concepts and to tie them to real-world design choices that must be made, four operating systems serve as running examples.
Easily Integrate Projects in your Course: This book provides an unparalleled degree of support for including a projects component in the course.
Keep Your Course Current with Updated Technical Content: This edition covers the latest trends and developments in operating systems.
Provide Extensive Support Material to Instructors and Students: Student and instructor resources are available to expand on the topics presented in the text.


Chapter 0 Guide for Readers and Instructors

0.1 Outline of the Book

0.2 A Roadmap for Readers and Instructors

0.3 Internet and Web Resources

PART ONE BACKGROUNDChapter 1 Computer System Overview
1.1 Basic Elements

1.2 Evolution of the Microprocessor

1.3 Instruction Execution

1.4 Interrupts

1.5 The Memory Hierarchy

1.6 Cache Memory

1.7 Direct Memory Access

1.8 Multiprocessor and Multicore Organization

1.9 Recommended Reading and Web Sites

1.10 Key Terms, Review Questions, and Problems

Appendix 1A Performance Characteristics of Two-Level Memory

Chapter 2 Operating System Overview
2.1 Operating System Objectives and Functions

2.2 The Evolution of Operating Systems

2.3 Major Achievements

2.4 Developments Leading to Modern Operating Systems

2.5 Virtual Machines

2.6 OS Design Considerations for Multiprocessor and Multicore

2.7 Microsoft Windows Overview

2.8 Traditional UNIX Systems

2.9 Modern UNIX Systems

2.10 Linux

2.11 Android

2.12 Recommended Reading and Web Sites

2.13 Key Terms, Review Questions, and Problems

PART TWO PROCESSES Chapter 3 Process Description and Control
3.1 What Is a Process?

3.2 Process States

3.3 Process Description

3.4 Process Control

3.5 Execution of the Operating System

3.6 UNIX SVR4 Process Management

3.7 Summary

3.8 Recommended Reading and Animations

3.9 Key Terms, Review Questions, and Problems

Chapter 4 Threads
4.1 Processes and Threads

4.2 Types of Threads

4.3 Multicore and Multithreading

4.4 Windows 8 Process and Thread Management

4.5 Solaris Thread and SMP Management

4.6 Linux Process and Thread Management

4.7 Android Process and Thread Management

4.8 Mac OS X Grand Central Dispatch

4.9 Summary

4.10 Recommended Reading

4.11 Key Terms, Review Questions, and Problems

Chapter 5 Concurrency: Mutual Exclusion and Synchronization
5.1 Principles of Concurrency

5.2 Mutual Exclusion: Hardware Support

5.3 Semaphores

5.4 Monitors

5.5 Message Passing

5.6 Readers/Writers Problem

5.7 Summary

5.8 Recommended Reading and Animations

5.9 Key Terms, Review Questions, and Problems

Chapter 6 Concurrency: Deadlock and Starvation
6.1 Principles of Deadlock

6.2 Deadlock Prevention

6.3 Deadlock Avoidance

6.4 Deadlock Detection

6.5 An Integrated Deadlock Strategy

6.6 Dining Philosophers Problem

6.7 UNIX Concurrency Mechanisms

6.8 Linux Kernel Concurrency Mechanisms

6.9 Solaris Thread Synchronization Primitives

6.10 Windows Concurrency Mechanisms

6.11 Android Interprocess Communications

6.12 Summary

6.13 Recommended Reading

6.14 Key Terms, Review Questions, and Problems

PART THREE MEMORYChapter 7 Memory Management
7.1 Memory Management Requirements

7.2 Memory Partitioning

7.3 Paging

7.4 Segmentation

7.5 Summary

7.6 Recommended Reading and Animations

7.8 Key Terms, Review Questions, and Problems

Appendix 7A Loading and Linking

Chapter 8 Virtual Memory
8.1 Hardware and Control Structures

8.2 Operating System Software

8.3 UNIX and Solaris Memory Management

8.4 Linux Memory Management

8.5 Windows Memory Management

8.6 Android Memory Management

8.7 Summary

8.8 Recommended Reading and Web Sites

8.9 Key Terms, Review Questions, and Problems

PART FOUR SCHEDULINGChapter 9 Uniprocessor Scheduling
9.1 Types of Scheduling

9.2 Scheduling Algorithms

9.3 Traditional UNIX Scheduling

9.4 Summary

9.5 Recommended Reading and Animations

9.6 Key Terms, Review Questions, and Problems

Chapter 10 Multiprocessor and Real-Time Scheduling
10.1 Multiprocessor and Multicore Scheduling

10.2 Real-Time Scheduling

10.3 Linux Scheduling

10.4 UNIX SVR4 Scheduling

10.5 UNIX FreeBSD Scheduling

10.6 Windows Scheduling

10.7 Summary

10.8 Recommended Reading

10.9 Key Terms, Review Questions, and Problems

PART FIVE INPUT/OUTPUT AND FILESChapter 11 I/O Management and Disk Scheduling
11.1 I/O Devices

11.2 Organization of the I/O Function

11.3 Operating System Design Issues

11.4 I/O Buffering

11.5 Disk Scheduling

11.6 RAID

11.7 Disk Cache

11.8 UNIX I/O

11.9 Linux I/O

11.10 Windows I/O

11.11 Summary

11.12 Recommended Reading

11.13 Key Terms, Review Questions, and Problems

Chapter 12 File Management
12.1 Overview

12.2 File Organization and Access

12.3 B-Trees

12.4 File Directories

12.5 File Sharing

12.6 Record Blocking

12.7 Secondary Storage Management

12.8 UNIX File Management

12.9 Linux Virtual File System

12.10 Windows File System

12.11 Android File Management

12.12 Summary

12.13 Recommended Reading

12.14 Key Terms, Review Questions, and Problems

PART SIX ADVANCED TOPICSChapter 13 Embedded Operating Systems
13.1 Embedded Systems

13.2 Characteristics of Embedded Operating Systems

13.3 Embedded Linux

13.4 TinyOS

13.5 Embedded Linux

13.5 Recommended Reading

13.6 Key Terms, Review Questions, and Problems

Chapter 14 Virtual Machines
14.1 Approaches to Virtualization

14.2 Processor Issues

14.3 Memory Management

14.4 I/O Management

14.5 VMware ESXi

14.6 Microsoft Hyper-V and Xen Variants

14.7 Java VM

14.8 Linux VServer Virtual Machine Architecture

14.9 Android Virtual Machine

14.10 Recommended Reading

14.11 Key Terms, Review Questions, and Problems

Cha