Librería Portfolio Librería Portfolio

Búsqueda avanzada

TIENE EN SU CESTA DE LA COMPRA

0 productos

en total 0,00 €

X-RAY IMAGING: FUNDAMENTALS, INDUSTRIAL TECHNIQUES AND APPLICATIONS
Título:
X-RAY IMAGING: FUNDAMENTALS, INDUSTRIAL TECHNIQUES AND APPLICATIONS
Subtítulo:
Autor:
MARTZ, H
Editorial:
CRC PRESS
Año de edición:
2016
Materia
ONDAS DE RADIO
ISBN:
978-0-8493-9772-1
Páginas:
574
225,68 €

 

Sinopsis

While books on the medical applications of x-ray imaging exist, there is not one currently available that focuses on industrial applications. Full of color images that show clear spectrometry and rich with applications, X-Ray Imaging fills the need for a comprehensive work on modern industrial x-ray imaging. It reviews the fundamental science of x-ray imaging and addresses equipment and system configuration. Useful to a broad range of radiation imaging practitioners, the book looks at the rapid development and deployment of digital x-ray imaging system.



Table of Contents
Chapter 1 Introduction to Nondestructive Evaluation. A Brief History of NDE, NDT, and NDC. Application of NDE to Life Cycle Management. X-Ray and ?-Ray Imaging in Context. Other (Than X-Ray and ?-Ray or Energetic Particle) NDE Methods. Electromagnetic Radiation Methods. Optical Testing with Visible Photons. Thermal or Infrared Imaging. Gigahertz-Terahertz Waves (Microwaves and Millimeter Waves) NDE Methods Using Acoustic Energy. Ultrasonic Testing. Acoustic Emission. NDE Methods Using a Tracer Dye Penetrant Testing. Magnetic Particle Inspection. Leak Testing. Other NDE Methods. Eddy Current NDE. Effectiveness and Statistics of NDE. Probability of Detection. Positive Predictive Value and Negative Predictive Value. Receiver Operating Characteristic Curve. When and How Much NDE. Industrial X-Ray Imaging Contrasted with Medical X-Ray Imaging. X-Ray History. History Introduction. Laying the Foundation. Discovery of X-Rays. The Morning After. Discovery of Radioactivity. Radiation Therapy Coolidge Tube. Computed Tomography. Industrial Computed Tomography. Radiation Accidents. The Role of X-Ray and ?-Ray Imaging. Introduction. Where X-Ray and ?-Ray Imaging Excel. Where X-Ray and ?-Ray Imaging Fall Short. Practical and Operational Issues. Summary. Physics of X-Ray and ?-Ray Sources. Introduction. Types of High-Energy Photons: X, ?, and Annihilation Radiation. Electrons and X-Ray Radiation Generation. Bremsstrahlung (Braking or Decelerating Electrons). Characteristic X-Rays Accelerating Charge. The Nucleus and ?-Ray and X-Ray Generation. Annihilation Radiation Generation. Units Used to Characterize and Describe High-Energy Photons. High-Energy (X-Ray and ?-Ray) Photon Interactions with Matter. Introduction. Attenuation and Phase Contrast. Attenuation: Photoelectric Absorption, Scatter, and Pair Production. Absorption (Photoelectric Absorption). Scatter. Pair Production. Photonuclear. Photofission. Linear Attenuation Coefficient µ. Mass Attenuation Coefficient µm. Atomic Attenuation Coefficient µa. Molar Attenuation Coefficient µM. Relationship among the Various Attenuation Coefficients. Mixture Rule. Total Attenuation/X-Ray and ?-Ray Attenuation. Phenomena. Reflection. X-Ray Phase Effects. Refraction. Snell's Law. Total External Reflection of X-Rays Diffraction. X-Ray Phase-Contrast Radiography. Radiation Transport Simulation. Introduction. Why Simulate Radiography. Types of Radiation Commonly Transported in Simulations. Methods of Simulation Discrete Ordinates. Ray Tracing. XRSIM X-Ray Simulation. HADES, a Radiographic Simulation Code. Ray-Tracing Summary. Monte Carlo Method. Los Alamos National Laboratory Monte Carlo N-Particle (MCNP) Code. Livermore National Laboratory TART, COG, Peregrine, and MERCURY Monte Carlo Codes Example Photon Transport Simulations. MCNP Used in Analysis of Albedo from Lead and Concrete. MCNP Applied to Collimator Design for a 9 MV Linac. MCNP to Determine Scatter Blur within a Flat-Panel Photodiode Array Detector. HADES Proton Radiographic Simulations to Study Hydrodynamics. COG Simulation Applied to Cargo Interrogation. Radiation Dosimetry, Safety, and Shielding. Introduction. Metrics of Radiation Exposure, Absorbed Dose, Dose Equivalent, and Effective Dose. Radiation Exposure Absorbed Dose. Linear Energy Transfer and Radiation Weighting Factor. Dose Equivalent. Effective Human-Equivalent Dose. Radiation Effects in Humans. Linear No-Threshold (LNT) Model. Human Risk from Low Effective Human-Equivalent Dose. Radiation Measurements for Monitoring Radiation Exposure and Absorbed Dose. Geiger-Muller Counter. Ionization Chamber Radiation Meter. Personal Dosimeter Sources of Human Absorbed Dose. Natural Background Radiation. Radon. Terrestrial X and ? Radiation. Radioisotopes in Food and Beverages. Cosmic Radiation. Man-Made Radiation Absorbed Dose. Occupational Dose Limits. Mining Legacy. Basics of Radiation Protection. Internal Radiation Dose External Radiation Dose. Shielding. Half-Value and Tenth-Value Layer Thickness. Radiation Sources. Introduction. The Perfect Source. Source Attributes: Brightness, Brilliance, Irradiance, Photon Flux Density, Photon Energy Spectrum, and Source Size. Electrically Powered X-Ray Sources. X-Ray Tubes. Common Design Elements and Subsystems of X-Ray Tubes. X-Ray Tube Configurations and Tube-Like Sources. Electron Accelerator-Based Sources. Electrostatic Generator. Synchrotron X-Ray Source. Betatron. Linac. Pulsed Sources. Pulsed X-Ray Tube. Accelerators as Pulsed Sources. Plasma X-Ray Sources. Laser-Driven X-Ray Sources. K alpha (Ka) X-Ray Sources. Free-Electron Laser (FEL) X-Ray Source Thomson/Inverse Compton Scattering X-Ray Source. Radioisotopic X-Ray and ?-Ray Sources. Radiation Detectors. Introduction. The Perfect Detector. Fundamental Statistical Considerations. Detection. Principles. Detector Types. Pulse Detection, Energy Discrimination, or Integrating Detection. Point, Line, or Area Detection. Detector Technology Film. Computed Radiography. Scintillators. Clear Crystals, Glass, or Ceramic Scintillators. Granular Composite Scintillators. Structured Scintillators. CCD-Based Area Detectors Employing a Scintillator. CMOS-Based Area Detectors Employing a Scintillator. Direct-Detection Flat Panels. Indirect-Detection Flat Panels. Imaging System Components. Introduction Sources of Detected Signal in X-Ray Imaging. Properties of FP. Properties of Background or System Scatter, FSbk. Properties of Object Scatter, FSobj. X-Ray Scatter Corrections and the Subtleties of Radiographic Imaging. Shielding and Collimation. Collimators. Antiscatter Grids. Limiting Apertures Staging for Object Positioning and Control. DR/CT Acquisition, Processing, Control, and Display How Big Are the Data Sets? On Screen and Interactive Tools of Value for CT. Computers for CT Data Acquisition. Computer Requirements for DR/CT Processing. Computers for CT Reconstruction. Displaying CT Data. Imaging-System Configurations. Introduction. 1-D X-Ray Gauging Systems. Radiography Systems. Radiography with a Linear-Detector Array. Radiography with an Area-Detector Array. 3-D Computed Tomography. CT Scanning with 1-D Gauging Systems. CT Scanning with Linear-Detector Arrays. CT Scanning with Area-Detector Arrays. Summary. Digital Radiography. Introduction. Physical Structure of Digital Radiographic Detectors. Single-Detector Systems. Linear-Detector Arrays. Area-Detector Arrays. Role